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Abstract—GitHub Actions was introduced in 2019 as an
integrated solution for CI/CD to automate software development
workflow. Since then, it has gained tremendous popularity among
developers. In a GitHub Actions workflow, actions refer to custom
applications for performing complex but frequently repeated tasks.
Actions can be typically found in GitHub Marketplace or public
GitHub repositories. Prior studies have already disclosed that
developers often reuse actions to reduce double work and improve
productivity. However, it is not trivial for developers, especially
novices, to figure out which action to reuse due to the large number
of actions available and the limited search functionality GitHub
Marketplace provides. To address this issue, we propose CIGAR
(ContrastIve learning for GitHub Action Recommendation). Given
the textual description of a task developers want to execute,
CIGAR will recommend the most relevant actions. CIGAR exploits
a pre-trained RoBERTa model to convert sequences of words
into high-dimensional vector representations, and is fine tuned
through a contrastive learning objective. The performance of
CIGAR was evaluated on a novel dataset curated based on
prior research, and the results demonstrate that CIGAR can
reliably recommend actions needed by developers and significantly
outperforms the GitHub Marketplace search engine. Our study
indicates the promise of employing contrastive learning for GitHub
action recommendation. The promising performance achieved
can potentially drive a wider adoption of GitHub Actions and
facilitate the automation of software development workflows.

Index Terms—GitHub Actions, CI/CD, Development Workflows,
Contrastive Learning, Recommender System

I. INTRODUCTION

GitHub [1] is the largest social coding platforms, hosting
over 330 million software repositories and accommodating
over 100 million developers in June 2023. By incorporating
features like issue tracking and pull requests into distributed
version control tools, GitHub has revolutionized the way
developers collaborate [2], [3]. While the adoption of a pull-
based development workflow presents many opportunities
and benefits, it also raises high requirements for repository
maintainers to coordinate the activities during the development
process such as internal communication, code review, testing,
and merging pull requests [4]. To facilitate the development
and collaboration, continuous integration and delivery (CI/CD)
tools have been widely adopted to automate a wide range of
activities including building, testing, quality assurance [5].

In 2019, GitHub publicly released GitHub Actions1 (GHA,
hereafter) as its own solution for CI/CD. GHA is fully

1https://github.com/features/actions

integrated into GitHub, and since its release, lots of repositories
have started adopting it or migrated their old CI/CD services
to GHA [6]. Like other CI/CD tools, developers can define
automated tasks in a GHA workflow. What makes GHA
workflow special is the adoption of “actions”, which are cus-
tom applications performing complex but frequently repeated
tasks. These actions, commonly distributed on the GitHub
Marketplace and/or in public repositories, allow developers to
easily integrate specific tasks (e.g., set up environment). By
reusing actions, developers can avoid writing repeated code in
the workflow and improve their productivity.

However, it is not always easy for developers to figure
out which actions to reuse. GitHub Marketplace2, as the
official portal where developers can search for actions, currently
provides over 19k actions. The number is only increasing
as third-party developers can list their own actions on the
marketplace. It is virtually impossible for a developer to know
all the existing actions. While GitHub Marketplace provides
a search functionality, its usability leaves much to be desired.
Navigating through the searching bar to discover appropriate
actions can be a frustrating experience as the search engine
often lacks precision and yield irrelevant or incomplete results,
making it challenging to find the desired actions. Moreover,
there are also many actions hosted on GitHub but not listed
on Marketplace. These usability issues hinder the overall user
experience and undermine the full potential of reusable actions.

To address the above issues, we propose a new approach
named CIGAR (Contrastive learning for GitHub Action
Recommendation). CIGAR takes as input the textual descrip-
tion of the tasks developers want to execute in the workflow,
and outputs the most relevant actions which can be reused.
CIGAR exploits the pre-trained model RoBERTa [7] to get
representations of task description, and uses contrastive learning
in a supervised way [8] to “pull" together the representations
of task description (i.e., the anchor) and matching actions
and “push” apart the anchor from non-matching actions in
high-dimensional vector space.

To evaluate the effectiveness of our proposed approach,
we crafted our own dataset based on the dataset created by
Decan et al. [6]. Experimental results indicate that CIGAR
significantly outperforms the search functionality provided by
GitHub Marketplace.

2https://github.com/marketplace



Compared to GitHub Marketplace, our approach improves
the success rate@1 (i.e., the first recommended action is
exactly the one adopted by developers) from 0.02 to 0.724 (a
3520% increase). Additionally, when comparing CIGAR with
RoBERTa without contrastive learning, our approach increases
the success rate@1 and @5 by 129.1% and 50.6%, respectively.
We also visualized the vector representations learned from
CIGAR and its variants to give readers a more intuitive idea
on the effectiveness of each component of our approach.

To the best of our knowledge, our study is the first to
recommend GitHub actions. The good performance indicates
the possibility of using contrastive learning to aid CI/CD
workflow composition and facilitate development process.

II. BACKGROUND

A. GitHub Actions

In order to use GHA in a GitHub repository, developers need
to specify the tasks they want to execute in the GHA workflow
using YAML syntax. All the workflow files should have
either .yml or .yaml extensions, and be placed within the
designated “.github/workflows” directory. An example
of such YAML files can be found in Listing 1, which defines
a GHA workflow named Maven test3.

name : Maven t e s t
on :

p u l l _ r e q u e s t :
t y p e s : [ opened , reopened , e d i t e d ]

push :
b r a n c h e s : [ deve lop , m a s t e r ]

j o b s :
mvn_ve r i fy :

runs −on : ubuntu − l a t e s t
s t e p s :

− u s e s : a c t i o n s / checkout@v3
− name : S e t up Maven C e n t r a l R e p o s i t o r y

u s e s : a c t i o n s / s e t u p −java@v2
wi th :

j ava − v e r s i o n : ‘8 ’
d i s t r i b u t i o n : ‘ adopt ’

− name : Run t h e Maven v e r i f y phase
run : mvn −− ba tch −mode −P dev t e s t

Listing 1: Example of a GHA workflow file.

Each GHA workflow consists of a set of jobs that are
triggered by a collection of events (e.g., push, pull request
in Listing 1). Each job comprises a series of steps, which
are the smallest units of work in a workflow. Steps can be
defined by specifying the commands that should be executed
using the run key (e.g., the last line of Listing 1) or by
delegating tasks to “actions” defined in the same repository,
a public repository, or a published Docker container image
through the uses key. In this study, we mainly focus on actions
from public repositories (referred to as “action repositories”).
In Listing 1, two actions are used: “actions/checkout”
checks out the repository so that the workflow can have the
access, and “actions/setup-java” sets up the required
Java environment so that the workflow can work with Java

3The example is adapted from a randomly picked GHA workflow, available
on https://github.com/abel533/Mapper/blob/master/.github/workflows/test.yml

projects. Developers can optionally specify the name of steps.
The step names are usually used to describe the task developers
want to execute. For example, the second step in Listing 1 is
named “Setup Maven Central Repository”.

B. Deep learning & Transfer learning
Deep learning (DL) is a rising field in machine learning that

utilizes neural networks to mimic human decision-making [9].
Unlike traditional models such as Decision Trees or SVM, DL
models automatically learn task-specific features from data,
reducing the need for complex feature engineering. However, a
key challenge is the reliance on massive training data due to the
large number of parameters, making them prone to overfitting
and poor generalization. Transfer learning addresses this issue
by leveraging knowledge from previously learned tasks. It
involves a pre-training phase to capture relevant knowledge
and a fine-tuning phase to apply it to new tasks, enabling
models to well handle target tasks with limited samples [10].

C. Pre-trained Model
The development of deep neural networks in Nature Lan-

guage Processing (NLP) has led to the introduction of Trans-
formers [11]. Pre-trained models like GPT [12] and BERT [13],
based on Transformer architectures, have shown impressive
performance on various NLP tasks.

Transformer [11] is a deep learning model architecture
introduced in 2017, initially designed for machine translation.
It utilizes self-attention mechanisms to capture relationships
between sequence elements without recurrent neural networks
(RNNs). The Transformer enables significantly more paral-
lelization, making it much easier to train on a large dataset.

BERT (Bidirectional Encoder Representations from Trans-
formers) [13] is a pretraining technique that applies bidi-
rectional training of Transformers to language modeling. By
training on a large number of unlabeled texts using tasks
like Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP), BERT captures bidirectional contextual
information and achieves high performance in NLP tasks.

RoBERTa (Robustly Optimized BERT Approach) [7] is an
extension of BERT, which builds upon BERT’s architecture
and is trained using a similar methodology but with some
modifications. RoBERTa removes the NSP task and employs
dynamic masking during training. Its superior performance and
robustness in various NLP tasks make it an ideal candidate for
our approach in action recommendation. We further enhance
its capabilities by fine-tuning it with contrastive learning.

D. Contrastive Learning
Contrastive learning was proposed as a learning paradigm

by Hadsell et al [14] for classification and has several different
formulations and variations. Unlike most loss functions that
sum over samples (e.g., cross-entropy loss and mean squared
error loss), contrastive loss functions explicitly handle the
similarity and dissimilarity between samples. They define
positive pairs (similar samples) and negative pairs (dissimilar
samples) and aim to maximize agreement within positive pairs
while minimizing agreement amongst negative pairs.
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Fig. 1: Overall framework of CIGAR

The overall framework of contrastive learning can be
described as follows:

• Define an encoder function f(x) that converts a given
sample x into latent vector representation.

• Define a function sim(vi, vj) to measure the similarity
between two representations vi and vj (e.g., Cosine
Similarity, Euclidian distance).

• Define a contrastive loss function L(pi, pj) to compute
the loss between pairs of representations pi and pj . The
loss function encourages similar samples to have higher
similarity scores and dissimilar ones to have lower scores.

Assume a batch of examples x1, ..., xn where n represents
the batch size. For each sample xi, create positive pairs
and negative pairs. Convert them into vector representation
v1, ..., vn with f(x). Compute the similarity scores for each pair
of representation with sim(vi, vj), and calculate the contrastive
loss L(pi, pj) based on the similarity scores.

III. CIGAR

We propose a novel approach CIGAR (Contrastive learning
for GitHub Action Recommendation), leveraging a pre-trained
model RoBERTa and contrastive learning. Given the textual
description of a task developers want to execute in the GHA
workflow, CIGAR recommends the most relevant GitHub
actions.

A. Overall Framework

Fig. 1 illustrates the overall framework of our model. Our
framework consists of three major components: 1) Data Pro-
cessing, 2) Text Embedding, and 3) Contrastive Learning. In the
subsequent subsections, we will provide detailed explanations
of these components.

B. Data Processing
Data Processing is the first step in our approach. We process

data from two sources: GHA workflows and action repositories.
For all the steps in each GHA workflow, we first extract 1)
the user description of the task, i.e., the name of the step
(name_u in Fig. 1, e.g., “Set up Maven Central Reposi-
tory”) and 2) the used action denoted as action_id (e.g.,
actions/setup-java). For this used action, we download
its GitHub repositories. Each action repository must contain a
metadata file named either action.yml or action.yaml,
which defines the inputs, outputs, and runs configuration. To
represent the action, we retrieve two features from the YAML
file: the official names (name_o) and descriptions (desc_o).
For example, the action actions/setup-java4 has an
official name “Setup Java JDK” and its description is “Set up
a specific version of the Java JDK and add the command-
line tools to the PATH”. In the end, we obtain a list of
data entries D in the format of (action_id, name_u,
name_o, desc_o) after data processing.

C. Text Embedding
In this step, for each entry in D, we aim to construct a vector

representation V _u (referred to as User Vector) for name_u
and one single vector V _o (referred to as Official Vector) for
both name_o and desc_o.

First, the text (name_u, name_o, or desc_o) is split into
a list of words and fed into the RoBERTa tokenizer. The
output tokens are then concatenated with a special [CLS]
token at the beginning and a [SEP ] token at the end to form a
single sequence. The sequence is further converted into token
IDs using the tokenizer’s convert_tokens_to_ids()
function. The token IDs are finally passed to the RoBERTa
model for generating vector representations.

4https://github.com/actions/setup-java



It is worth noting that to effectively use the RoBERTa model,
input sequences of equal length are necessary. Thus, we select
a block size of 128 tokens as all the individual texts in our
train set are much shorter (with a maximum size of 29 words).
The block size of 128 ensures that no relevant information is
omitted during training, and allows for potential longer inputs
during validation and testing without the need of truncating and
sacrificing essential information. If the token IDs are shorter
than 128, one-padding is applied to maintain consistent input
dimensions for the RoBERTa model.

The outputs of the RoBERTa model are vector representa-
tions of name_u, name_o, and desc_o, denoted as V _u,
V _o_name, and V _o_desc, respectively. We further aggregate
V _o_name and V _o_desc using arithmetical mean value [15]
and obtain the Official Vector V _o. To conclude, during this
step, we convert D into a list of data in 3-tuple structure:
(action_id, V _u, V _o).

D. Contrastive Learning

Our approach exploits Contrastive Learning to pull together
text referring to the same actions and to push apart that referring
to distinct actions. Specifically, we train our model using a
contrastive loss function that combines the N-pair Loss and
Soft-Nearest Neighbor Loss, which was originally proposed
by Tao et al. [16]. With the aim of increasing the similarity
between texts referring to the same actions while reducing the
similarity between texts referring to different actions, the loss
function is defined as follows:

LN = −log
exp(sim(v⊤, v+)/τ)

exp(sim(v⊤, v+)/τ) +
∑N−1

j=1 exp(sim(v⊤, vj−)/τ)
(1)

where v⊤ is the vector representation of the anchor text sample,
v+ and v− stand for representations of positive/negative text
samples, and τ is the temperature, a hyperparameter that can
be tuned to scale the penalties on negative samples.

For the similarity evaluation sim(vi, vj), we adopt Cosine
Similarity. A simple linear transformation is added as we expect
a co-domain of [0, 1]:

sim(u, v) = (
u · v
∥u∥∥v∥

+ 1) ∗ 0.5 (2)

Algorithm 1 illustrates the pseudocode for constructing
positive/negative samples and computing the contrastive loss.

We loop over each batch B of data, for each 3-tuple
(action_id, V _u, V _o) we take the User Vector as
an anchor example V _u⊤, which represents the step name
assigned by developers (i.e., description of the task they want
to execute in a workflow). Then we use the Official Vector, i.e.,
the arithmetic mean of the two vectors of official name and
description, as a positive example V _o+. To generate negative
examples, we again iterate over B, any Official Vectors that
do not represent the same action as the anchor example (i.e.,
having a different action_id) are considered to be negative,
denoted as V _o−. After constructing positive and negative
examples, we compute their cosine similarity with anchor

Algorithm 1: Contrastive loss computation

Input: A batch of data, B;
Output: Batch contrastive loss, LB ;

for each tuple Ti in B do
V _u⊤, V _o+ ← Ti;
Spos ← sim(V _u⊤, V _o+);
for each tuple Tj(i ̸= j) in B do

if Ti.action_id ̸= Tj .action_id then
_, V _oj− ← Tj ;
Snegj ← sim(V _u⊤, V _oj−);

end
end
Li = −log( exp(Spos/τ)

exp(Spos/τ)+
∑

exp(Sneg/τ)
);

end
LB =

∑|B|
i=1 Li/|B|;

example. Then we apply Func. 1 to compute the contrastive
loss Li for each anchor example in batch B, and eventually
obtain the batch contrastive loss LB using the average value.

We initialize our model with the same parameters used in
the Hugging Face’s implementation of RoBERTa5, and exploits
the contrastive loss computation process demonstrated above
to fine-tune the model.

IV. STUDY DESIGN

The goal of this study is to evaluate the ability of CIGAR
in terms of recommending correct actions to developers.

A. Research Questions

We aim at answering the following research questions (RQs):
• RQ1: To what extent is CIGAR able to provide accurate

recommendations for actions? In this RQ, we aim to
analyze whether the recommended actions are actually
the ones adopted by developers. The results will give a
general picture of how reliable our approach is.

• RQ2: How do different features impact the performance
of CIGAR? We aim to analyze performance of CIGAR
when training on different combinations of data features
to understand how each feature contributes to the perfor-
mance.

• RQ3: How do fine-tuning and constractive learning impact
the performance of CIGAR? Two important components
in our approach is fine-tuning RoBERTa and contrastive
learning. We aim to understand how much each component
contributes to the performance.

• RQ4: How does CIGAR perform compared to the GitHub
Marketplace search functionality? GitHub Marketplace
is currently the online official portal where developers
can search for actions to reuse. We aim to compare the
recommendation capacities of CIGAR and the GitHub
Marketplace.

5https://huggingface.co/docs/transformers/model_doc/roberta



TABLE I: EXAMPLES OF DATASET

action official name official description user-assigned step names # user-assigned step names

actions/upload-artifact Upload a Build Artifact
Upload a build artifact

that can be used by
subsequent workflow steps

upload package archive,
upload covered self goc binary,

...
4416

actions/cache Cache
Cache artifacts like dependencies

and build outputs to improve
workflow execution time

restore build files from cache,
cache/restore node_modules,

...
2179

... ... ... ... ...

mikeal/merge-release Merge Release Deploy to npm!
release,
publish,

publish to npmjs
3

blinktag/nfpm NFPM packager action v2
NFPM packaging tool for deb,

rpm, and apk packaging

create apk package,
create deb package,
create rpm package

3

B. Data Collection

We built our dataset based on secos-gha, a publicly
available dataset created by Decan et al. [6]. secos-gha
contains 67,870 repositories, encompassing 70,278 workflows,
108,500 jobs, and 567,352 steps.

For these steps, we first extracted the actions by parsing the
uses key (e.g., uses: actions/setup-python@v4).
We skipped those which did not contain the uses key. In our
study, we also removed the version number (e.g., @v4), as we
found in most cases the workflows would still work when a
different version, especially newer ones, are used. The name
of the steps were also recorded. This resulted in 2,468 unique
actions, called in 180,593 steps across 24,875 repositories. We
then filtered out those actions which are associated with less
than three different user-assigned task names, in order to get
rid of too specific or toy actions. This resulted in 802 distinct
actions.

For these 802 actions, we downloaded their corresponding
GitHub repositories and extracted their action YAML files
(named either action.yml or action.yaml). We then
further retrieved the official names and descriptions from YAML
files. As action YAML files are mandatory for GitHub action
repositories, we consider a repository incomplete such the
action YAML file is missing. After removing these actions
with incomplete repositories, we obtained 756 distinct actions,
associated with 24,993 distinct step names.

Table I presents some examples of our dataset. Apparently,
some actions are reused much more frequently than others,
which indicates the imbalance of the dataset, which corresponds
to the reality.

C. Data splitting

To train and evaluate our approach, we split our data into
train, valid, test sets with a ratio of 4:1:1 on the level of
distinct user-assigned step names. For example, an action with
60 distinct step names will have 40, 10, and 10 data points in
the train, validation, and test sets, respectively.

Furthermore, we only focus on the top-100 actions with the
highest number of distinct step names for the validation and
test sets, while all the actions were included in the train set.

The reason is that most of those actions after top-100 have
a very limited number of distinct step names, and cannot be
easily split based on the ratio of 4:1:1. We also believe that
limiting to the top 100 actions during testing enables a targeted
evaluation of the model’s effectiveness on actions that have
a higher likelihood of being utilized by users, ensuring that
the evaluation results are more indicative of real-world usage
scenarios.

D. Evaluation Metrics

To evaluate our approach, we collect the following data for
each input m (user-assigned step name):

• topN (m): the top-N recommended actions;
• a(m): the actual action used in the step;
• matchN (m): a binary variable, 1 if a(m) ∈ topN (m),

otherwise 0.

To measure the performance of CIGAR, we utilize two
evaluation metrics: success rate@N and catalog coverage. These
metrics have been widely adopted in the related studies [17].

Success rate@N. Given a set of user-assigned step names
M , which refer to a set of actions A, the success rate@N is
defined as the ratio of the actions falling within the top-N
suggested actions to the total number M :

Success rate@N =

∑|M|
i=1 matchN (m)

|M | (3)

In our study, the number N was set from 1 to 5. Since our
data is highly biased (i.e., some actions were associated with
thousands of distinct names while some are only associated with
a few), there is a need to reduce the potential bias. Therefore,
for those actions with more than 10 distinct step names, we
only randomly picked 10 data points.

Catalog coverage. Ideally, we would like CIGAR to be
able to provide diverse suggestions. This metric is calculated
as the ratio of recommended distinct actions to the number of
all the available actions for recommendation:

Coverage rate@N =
| ∪m∈M topN (m)|

|A| (4)



TABLE II: SUCCESS RATE ON TEST SET,
N = [1-5], τ = [0.1-10000]

Temperature τ
N

1 2 3 4 5

0.1 0.046 0.077 0.105 0.128 0.153

1 0.198 0.319 0.408 0.477 0.528

5 0.523 0.69 0.781 0.834 0.875

10 0.661 0.833 0.889 0.936 0.953

50 0.724 0.878 0.927 0.948 0.955

100 0.74 0.871 0.907 0.944 0.959
500 0.708 0.851 0.895 0.927 0.955

1000 0.703 0.852 0.908 0.94 0.958

5000 0.673 0.841 0.906 0.934 0.952

10000 0.684 0.841 0.901 0.926 0.944

E. Experimental Setting

Our model is implemented with PyTorch, based on the
RoBERTa model provided by Hugging Face6. The hyperparam-
eters chosen for our approach were as follows: CIGAR was
trained for 10 epochs with a batch size of 16. Adam optimizer
was used with a learning rate of 5e−5. To keep the random
process in our approach reproducible, the seed value was set
to 123456.

V. RESULTS

This section presents our experimental results and answers
our four research questions regarding the overall effectiveness
of CIGAR, the impact of different features, fine-tuning, and
contrastive learning in CIGAR, and to what extent it can
outperform GitHub Marketplace search engine.

A. RQ1: To what extent is CIGAR able to provide accurate
recommendations for actions?

To investigate the effectiveness of our approach, we con-
ducted experiments on the test data with various temperature
τ . Table II shows the success rate@N of our approach when
τ and N were set to different values. When N = 1 (i.e.,
only recommending one action), CIGAR can already provide
reasonable results with a temperature τ higher than 10 (success
rate over 0.661). For most Ns, the success rate is the highest
when τ is set to 50.

To get better overview on how the performance changes
along with the different τ and N , we visualized the results in
Fig. 2. The left part shows the success rate@N of CIGAR
with different values of N ranging from 1 to 10, when τ is
set to 50. We added the values for N from 6 to 10 in this
case, just to get an idea on potential saturation of success
rate. Apparently, when N increases, the corresponding success
rate also improves, which is expected as the more actions

6https://huggingface.co/

TABLE III: CATALOG COVERAGE ON TEST SET,
N = [1-5], τ = [0.1-10000]

Temperature τ
N

1 2 3 4 5

0.1 0.69 0.82 0.92 0.96 0.97

1 0.84 0.92 0.96 0.97 0.99

5 0.97 1 1 1 1

10 0.96 1 1 1 1

50 0.97 1 1 1 1

100 0.97 1 1 1 1

500 0.96 1 1 1 1

1000 0.97 1 1 1 1

5000 0.95 1 1 1 1

10000 0.96 1 1 1 1
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Fig. 2: Success rate of CIGAR with various N and τ

recommended, the higher chance to hit the adopted action. The
improvement in the success rate is substantial when N < 5.
After that, the improvement becomes relatively less noticeable.
When N = 5, our model demonstrates a success rate higher
than 95%. The right part of Fig. 2 illustrates the success
rate@N of CIGAR with various values of temperature τ from
10−1 to 104. A significant enhancement in success rate can
be observed while increasing τ from 10−1 to 101. However,
once exceeding 50, a higher τ does not help in terms of
generating more accurate suggestions in most of the cases.
Instead, an excessively high temperature can even damage the
model’s performance especially when N is relatively small.
For example, when the temperature is increased from 102 to
104, the success rate@1 decreases from 74% to 68.4%.

Table III shows the catalog coverage rate of our approach
with various N and τ selected. When τ ≥ 5 and N > 1,
CIGAR almost always achieves a full coverage; even when
N is set to 1, the coverage is still at least 95%. The high
coverage indicates that a large portion of the available actions
are considered for recommendation, i.e., CIGAR can effectively
make suggestions across various types of available actions.

To be consistent and utilize the parameters which can bring
the best performance, when answering the remaining RQs, we
use τ of 50.



TABLE IV: SUCCESS RATE ON DIFFERENT FEATURE
COMBINATIONS, N = [1-5], τ = 50

Selected features
N

1 2 3 4 5

name only 0.656 0.838 0.902 0.929 0.943

description only 0.672 0.837 0.89 0.918 0.936

both w/ vector mean 0.724 0.878 0.927 0.948 0.955
both w/ mean similarities 0.721 0.874 0.917 0.943 0.952

B. RQ2: How do different features impact the performance of
CIGAR?

To answer this RQ, we investigated the performance of the
model when different features were used and when different
feature combination strategies were used. More specifically,
we consider the following scenarios:

• Name only. We only use the official name to represent
actions during training, discarding the description infor-
mation.

• Description only. We only use the description to represent
actions during training, discarding the official names.

• Both features with vector mean. This is our original
approach described in Section III, namely we use both
name and description to represent actions. The two features
are aggregated by calculating the arithmetic means of their
high-dimensional vector representations.

• Both features with mean cosine similarity. Both features
(name and description) are used. However, instead of
taking the arithmetic means of their vector representations,
in this setting we aggregate the cosine similarities between
the vectors of these two features and the vector of the
corresponding user-assigned step names (V _u). In other
words, the model’s suggestions for actions are made based
on the average cosine similarity.

The success rate@N can be found in Table IV. For all the
different values of N , CIGAR achieves better performance
when training with both features of actions (i.e., names and
descriptions), instead of training only on one of the two
features. Incorporating multiple features allows the model
to capture complementary information, resulting in a more
comprehensive representation of the data, which potentially
improve the performance. Moreover, aggregating the vector
representations of the two features tends to yield better
performance compared to aggregating the cosine similarity.
This implies that aggregating vectors can better capture the
complex relationships and nuances between the two features,
enabling CIGAR to make more accurate suggestions. However,
it is worth noting that the improvement is rather limited.

Another fact is that when N is becoming larger, the
performance difference is becoming smaller even fewer fea-
tures are used. However, if we only want to take the first
recommendation, using both features can bring much more
visible enhancement for recommending the correct actions.

TABLE V: SUCCESS RATE ON EACH VARIANT OF OUR
APPROACH, N = [1-5], τ = 50

Model variants
N

1 2 3 4 5

CIGAR 0.724 0.878 0.927 0.948 0.955

RoBERTa w/ fine-tuning 0.316 0.432 0.521 0.577 0.634

RoBERTa w/o fine-tuning 0.081 0.116 0.153 0.171 0.197

C. RQ3: How do fine-tuning and constractive learning impact
the performance of CIGAR?

In our approach, we exploited the RoBERTa model to
generate high-dimensional vector representations and used
contrastive learning to fine tune the model. In this RQ, we
are interested in the impacts of different components on the
performance, namely the fine-tuning and contrastive learning.
Therefore, we compared our approach with two variants:

• RoBERTa without fine-tuning. We directly use the
pretrained RoBERTa to suggest actions based on user-
assigned step names without fine-tuning and contrastive
learning.

• RoBERTa with fine-tuning. We fine tune the RoBERTa
model without contrastive learning. During the fine-tuning
process, we use Mean Square Error (MSE) as the loss
function that is used in the original RoBERTa model.

Table V shows the results of these two variants and CIGAR.
Comparing the results of RoBERTa with and without fine-
tuning, we find that our approach significantly benefits from
fine-tuning. The success rate@5 is only 0.197 if we directly
use the representations in RoBERTa to recommend GitHub
actions. With fine-tuning, the success rate increases by 0.437.
If we fine-tune with contrastive learning, the success rate@5
further increased by 0.321. Both fine-tuning RoBERTa and
contrastive learning can bring significant improvement in the
model’s performance.

To have an intuitive understanding on how these variants
differ from each other, we also visualized the code vectors.
We randomly selected five actions and get embeddings of user-
assigned step names that refer to these actions, then we use
t-SNE [18] to reduce the dimensionality from 128*768 to 2 for
visualization. As shown in Fig. 3, points in the same shape/color
represent user-assigned step names referring to the same actions.
Points with the same shape/color in Fig. 3 (a) are scattered
across the graph, meaning that the embedding of name is
irregular without fine-tuning. Some of the points with the same
shape/color in Fig. 3 (b) converge together, but their boundaries
are not always clear and some of them tangled together, which
means it can tell the differences of only some actions, but not
all of them. As illustrated in Fig. 3 (c), contrastive learning can
keep dissimilar pairs away while pulling similar pairs together,
which greatly increases the success rate when recommending
GitHub actions.



(a) w/o finetune (b) w/ finetune (c) CIGAR: w/ finetune + contrastive learning

Gradle Build Action Setup Miniconda GitHub API Request GoReleaser Action Add & Commit

Fig. 3: Visualization of the vector representations of the user-assigned names

TABLE VI: EFFECTIVENESS OF CIGAR VS. MARKETPLACE,
N = [1-5], τ = 50

Models
N

1 2 3 4 5

CIGAR 0.724 0.878 0.927 0.948 0.955

Marketplace 0.018 0.025 0.027 0.027 0.028

D. RQ4: How does CIGAR perform compared to the GitHub
Marketplace search functionality?

As GitHub Marketplace is currently the official portal for
developers to search for actions, we compared our approach
with the search engine provided by GitHub Marketplace. We
adopted the same test set which was used for answering RQ1.
More specifically, we input the user-assigned step names in
the search engine of Marketplace, and collected the returned
list of actions. This process was automated with scripts. We
then calculated the success rate for GitHub Marketplace and
compared the results with CIGAR.

As show in Table VI, our approach remarkably outperforms
the GitHub Marketplace search engine in terms of success
rate@N . For most of the cases, GitHub Marketplace was not
able to return any results with the step name assigned by
developers. This result implies that the algorithm behind this
search engine is probably trivial and does not take into account
different aspects (e.g., official description) in actions. We
recommend that GitHub can improve the search functionality
to make it easier for developers to locate the actions they
need. Moreover, some actions publicly available might not be
listed on GitHub actions, a search engine which contains these
actions will also be appreciated.

E. Replication Package

To facilitate replication studies, our scripts and dataset are
publicly available online, which can be found on https://github.
com/jiangnanpro/CIGAR.

VI. DISCUSSION

Our experimental results have demonstrated the promise
of CIGAR. However, it would be beneficial to dig deeper
and understand when our approach does not generate good
recommendations for future improvement. Therefore, in this
section, we investigate the underlying reasons behind the
occasional failures of CIGAR.

A. When Does CIGAR Fail When N = 1?

We first inspected the cases in which CIGAR fails when
N = 1, i.e., the first recommended action is not the one
adopted by developers. Out of the 100 distinct actions used in
the test set, 69 of them contain at least one failure. In total,
236 recommended actions are not what developers adopted.
Table VII provides some examples of failed attempts.

With a closer examination on the failed recommendations,
we found that these failures often include duplicated
actions. For example, both actions/setup-ruby and
ruby/setup-ruby serve the purpose of setting up a Ruby
environment. When looking into their official repositories,
we discovered that the action actions/setup-ruby
was marked as deprecated, and users were advised
to migrate to ruby/setup-ruby, which is actively
maintained by the official Ruby organization at this
moment. Similar situations were observed for the
actions such as actions/create-release and
marvinpinto/action-automatic-releases. In the
repository of actions/create-release, action owners
indicated that the action was no longer maintained and
suggested users to consider other alternative actions.

TABLE VII: EXAMPLES OF CIGAR FAILURES @N = 1

user-assgn. step name recommended action action adopted

“setup ruby 2.6” actions/setup-ruby ruby/setup-ruby

“cache .gradle” actions/cache burrunan/gradle-cache-action

“create new release” actions/create-release marvinpinto/action-automatic-releases



These examples clearly highlight the presence of outdated
actions. As GitHub Actions is still an emerging realm, action
deprecation and updates can occur frequently. We would
recommend that developers pay attention to the potential
changes of the actions they use. To improve the usability,
action recommender systems can also detect duplicate actions
and consider whether the recommended actions are still actively
maintained. Preferences should be given to those still active.

B. When Does CIGAR Fail When N = 5?

We further investigated the failed cases when N = 5,
namely the adopted actions do not appear among the top 5
recommendations. Out of the 100 actions in our test set, 23 of
them had at least one failed case. In total, CIGAR was not able
to recommend actions for 45 different task descriptions (step
names). Interestingly, most of the failed examples were associ-
ated with user-side issues. As depicted in Table VIII, many of
the failed examples were caused by the overly general assigned
step names (e.g., “build” and “test”). Another interesting
example is the action coverallsapp/github-action in
Table VIII. The develop assigned the step name “send parallel
finished” and used this action. However, this assigned step name
is irrelevant to the official name (“Coveralls GitHub Action”)
or the description (“Send test coverage data to Coveralls.io
for analysis, change tracking, and notifications”) of the action.
Instead, it refers to an optional input named “parallel finished”.
Consequently, CIGAR faced challenges in deducing the correct
suggestion due to the mismatch between the step name and
official name/description.

To improve the performance of CIGAR, we could incorpo-
rate more information from action repositories. By including
details about each input of actions, CIGAR might be able to
provide more relevant suggestions. However, it is also important
to consider that more data leads to increased computational
power requirements. Besides, some noise might be introduced
as some inputs are very general and not relevant to the task
itself. Therefore, more study should be conducted to understand
the benefit of integrating input information in our models.

Another lesson we could learn is that, developers are not
always able to describe the task they want to execute in GHA
workflow concisely and accurately. A intelligent assistant might
be introduced to take a proactive approach and guess what
kind of steps developers would like to have at the first place.

VII. THREATS TO VALIDITY

Threats to internal validity concern the extent in which
the evidence supports our claim about cause and effect. In this
paper, we exploited the pre-trained RoBERTa model to convert
descriptive keywords or names into the high-dimensional code
vector space. The scale of our data is not huge, CIGAR
may tend to memorize the examples in the dataset instead of
learning general patterns. This can lead to overfitting, as the
model becomes too specialized to the train set and performs
poorly on new data. To address this threat, several regularization
techniques have been performed in our approach, including
early stopping and exploiting a validation set.

TABLE VIII: EXAMPLES OF CIGAR FAILURES @N = 5

user-assgn. step name recommended action action adopted

“build”

goreleaser/goreleaser-action
uraimo/run-on-arch-action
borales/actions-yarn
eskatos/gradle-command-action
gradle/gradle-build-action

pypa/cibuildwheel

“test”

reactivecircus/android-emulator-runner
eskatos/gradle-command-action
gradle/gradle-build-action
borales/actions-yarn
goreleaser/goreleaser-action

cypress-io/github-action

“send parallel finished”

octokit/request-action
styfle/cancel-workflow-action
actions/github-script
geekyeggo/delete-artifact
rtcamp/action-slack-notify

coverallsapp/github-action

Threats to construct validity concern the relationship
between theory and observation. In our study, we used success
rate@N and catalog coverage as the metrics for performance
evaluation. One issue is that our dataset is highly imbalanced,
which means some actions are associated with much more step
names than others. To mitigate the bias it could introduce in the
success rate, we focused on the top-100 actions with the highest
number of distinct step names for validation and testing, and
only picked 10 randomly selected data points for those actions
with more than 10 distinct step names. However, it is unclear
how our approach performs for less popular actions. Another
issue is that we only consider a recommendation correct when
it is exactly the one used by developers. However, sometimes,
it is possible that several actions would work. Therefore, our
reported success rate is actually the lower bound for our dataset.

Threats to external validity mainly concern the generaliz-
ability of our results. We built our dataset based on the data
published in 2022 [6] and only used actions associated with
over two distinct names. Currently, the number of available
actions are increasing rapidly, and much more workflows have
been created since the data were collected. It is unclear where
our recommender system can achieve similar performance when
the data points significantly increase. However, we believe our
study has sufficiently demonstrated that the applied method
is promising, and the high catalog coverage also indicates the
ability of recommending a wide range of actions.

VIII. RELATED WORK

In this section, we discuss the related work on GitHub
Actions and recommendation systems for software engineering.

A. GitHub Actions

Since the emergence, GitHub Actions has been widely
adopted by developers. However, it has not been extensively
studied by researcher, given that it is a rather young tool.

Golzadeh et al. [19] conducted an empirical study based on
91K+ active GitHub repositories to understand the evolving CI
landscape on GitHub. By analyzing the development history
of these repositories, they observed that GHA has become the
dominant CI/CD service only 18 months after its introduction.
After analyzing 14K migrations of CI tools in 13K+ repositories,
they found that most of them (12K+ cases) targeted GHA.



Kinsman et al. [20] conducted the pioneering study exploring
developers’ utilization of GHA and the subsequent changes in
various activity indicators following their adoption. Through
an extensive analysis of 3,190 repositories, they found that the
implementation of GHA led to an increase in the number of
rejected pull requests while reducing the number of commits
in merged pull requests. By manually inspecting 209 issues
related to GHA, they concluded that most developers had a
positive perception of GHA.

Valenzuela-Toledo and Bergel [21] investigated the use and
maintenance of GHA workflows. They conducted a manual
inspection of 222 commits associated with workflow changes
and revealed 11 distinct types of workflow modifications.
Additionally, they discovered several shortcomings in the
production and maintenance of GHA workflows, highlighting
the need for adequate tools that facilitate the creation, editing,
refactoring, and debugging of GHA workflow files.

Decan et al. [6] conducted an empirical study based on a
dataset of 68K repositories, with 43.9% utilizing GHA. They
indicated that the reuse of actions in GHA is a common practice,
but it is concentrated in a limited number of actions. Overall,
they provided an overview of GHA’s usage, contributing to
a better understanding of both GHA and its implications for
collaborative software development on GitHub.

B. Recommendation systems for software engineering

Recommendation systems for software engineering (RSSEs,
hereafter) are software applications that provide information
items estimated to be valuable for a software engineering task
in a given context [22]. They assist developers in navigating
large information spaces and getting instant recommendations
that are helpful to solve a particular development task.

Nguyen et al. [23] presented FOCUS, a tool which mines
open-source software repositories to recommend API method
invocations and usage patterns by analyzing how APIs are used
in projects similar to the current project. FOCUS has been
evaluated on a large number of Java projects collected from
GitHub and Maven Central. Results show that it outperforms
the state-of-the-art approach PAM [24] with regard to the
success rate, accuracy, and execution time.

Di Rocco et al. [25] presented TopFilter, a tool to assist
open source software developers in selecting suitable topics
for GitHub repositories. They built a project-topic matrix and
applied a syntactic-based similarity function to recommend
missing topics by representing repositories and related topics
in a graph. The results show that TopFilter exhibits good
performance. Furthermore, by leveraging the results obtained
from the state-of-the-art topic recommender system MNB
network [26] as its initial set of topics, TopFilter can experience
a substantial enhancement in its performances of topics
recommendation.

Rubei et al. [27] introduced PostFinder, which provides
suggestions on posts that contains highly relevant answers from
Stack Overflow according to a user-given context consisting
of the source code under development. The approach has
been validated utilizing a user study involving a group of

12 developers.Experimental results indicate the suitability of
PostFinder to recommend relevant Stack Overflow posts and
concurrently show that the tool outperforms a well-established
baseline FaCoY [28].

Wei et al. [29] proposed an approach named CLEAR for
automatic API recommendation. They point out that existing
methods have limitations in capturing sequential semantic
information and distinguishing similar queries. CLEAR ad-
dresses these issues by using BERT sentence embeddings and
contrastive learning. Experimental results indicate that CLEAR
achieves significant improvements in method-level and class-
level API recommendation compared to other approaches.

A systematic literature review has also been conducted
for RSSEs. Gasparic and Janes [22] assessed 46 papers on
RSSEs from 2003 to 2013. Their findings indicate that RSSEs
mainly output source code artifacts to enhance system quality,
streamline development, reduce cognitive load, and aid decision-
making. Unexploited opportunities lie in the development of
recommendation systems outside the source code domain.

Di Rocco et al. [30] also presented an experience report
on various RSSEs that have been developed in the context of
EU CROSSMINER project. They indicated that multiple data
mining and machine learning techniques are adopted while
building RSSEs when a large amount of data are available.

To the best of our knowledge, none of the RSSEs have tried
to recommend GitHub actions or help the composition of other
CI/CD tools.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented CIGAR, a new approach to
recommend actions to developers for facilitating their GHA
workflow composition. The evaluation with action adoptions
from real GHA workflows indicates that CIGAR can generate
accurate recommendations and cover a wide range of available
options. CIGAR also remarkably outperforms the default
search engine provided by GitHub Marketplace. The satisfac-
tory performance reveals the promise of using the RoBERTa
model and contrastive learning to create recommender systems
for software engineering tasks.

As for future work, we will focus on two aspects. Firstly,
we will focus on improving the performance of our approach.
CIGAR will be trained on a larger scale of dataset which is
up-to-date and covers more actions on GitHub Marketplace, as
the current dataset was crafted based on the data released in
2022. Furthermore, more features, such as the inputs of each
action and the ReadMe.md files in action repositories will be
taken into account when constructing vector representations.
Secondly, we will focus on other recommendation tasks related
to CI/CD workflows. The core techniques in CIGAR can also
be applied in different areas in the field of software engineering.
In the future, we plan to adopt deep learning for tasks including
automatic workflow completion/generation, GHA workflow
debugging and refactoring.
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